手机浏览器扫描二维码访问
欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”
欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”
卡农说:“假如说1997和615这两个数字。”
欧几里得说:“1997除以615,等于3余出152。”
卡农说:“然后怎么求?”
欧几里得说:“除数除以余数,615除以152等于4余7.”
卡农说:“然后152除以7等于21余5.”
欧几里得接着说:“没错,然后7除以5,等于1余2.”
卡农说:“5除以2,等于2余1.”
欧几里得说:“2除以1,等于2余0.”
卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环r是符合一下接个要求的:
1、a
关于加法成为一个
abel
群(其零元素记作
0);
2、乘法满足结合律:(a
*
b)*
c
=
a
*(b
*
c);
3、乘法对加法满足分配律:a
*(b
+
c)=
a
*
b
+
a
*
c,(a
+
b)*
c
=
a
*
c
+
b
*
c;
如果环
a
还满足以下乘法交换律,则称为“交换环”
:
4、乘法交换律:a
*
b
=
b
*
a。
如果交换环
a
还满足以下两条件,就称为“整环”
(integral
domain):
5、a
中存在非零的乘法单位元,即存在
a
中的一个元素,记作
1,满足:1
不等于
0,且对任意
a,有:e*
a
=
a
*
e=
a;
6、ab=0
=>
a=0
或
b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。
凡欧几里得整环必为主理想环。
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...
关于我当大圣姐姐这些日子,操碎了心孙蓉一觉睡醒莫名穿越到了西游世界原本想着苟到西游结束,却发现自己竟成了孙悟空同源相生的姐姐她慌了,如果佛门知道她这样的变数存在,会饶过她么?怕是恨不得让她胎死腹中。为了活下去,她必须逆天改命,破坏西游量劫而她不知的是孙悟空竟然能够偷听她的心声她觉得自己手握剧本,便已是抢占先机悟空拜师学艺的时候,她告诉悟空不能贪心,祖师说的咱都要学,祖师没说的咱也要追着他学悟空上天做官的时候,她告诉悟空要彬彬有礼,这弼马温可是个好官,上班摸鱼两不误可当她醉酒以后,错把王母当嫦娥,拉着王母义结金兰,指着佛祖破口大骂她问太白你是女的么?她问玉帝你是吴刚么?你真的喜欢嫦娥?她又问王母玉兔好不好吃?为了悟空,一向稳重的她,偷了仙丹又偷桃,还把玉帝的昊天镜搬回了家。当面对佛门责问的时候,一脸认真你有证据,那就算我输。就这样,孙蓉开启了一段不一样的西游之旅。...
...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...