手机浏览器扫描二维码访问
在17世纪,有一个赌徒德扎尔格向法国着名数学家帕斯卡挑战。
德扎尔格说:“甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?”
帕斯卡陷入沉思,显然这个要使用概率的知识。
不难得知,甲获胜的可能性大,乙获胜的可能性小。
帕斯卡对赌徒说:“甲输掉后两局的可能性只有二分之一乘以二分之一等于四分之一。”
德扎尔格说:“没错。”
帕斯卡说:“那甲赢得后两局或后两局中任意赢一局的概率为一减去四分之一,为四分之三。”
德扎尔格说:“你的意思是甲赢得可能性高,让甲拿100法郎吗?”
帕斯卡说:“当然不对了,因为乙获胜可能性虽然低,但也有获胜可能性。”
德扎尔格说:“那怎么办?”
帕斯卡说:“虽然你们不能赌了,但是有概率所导致的期望,按照这个期望来。
甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(12)*(12)=14,即乙有25%的期望获得100法郎奖金。”
德扎尔格一边听了,一边也开始心算,帕斯卡继续说:“可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75法郎,乙应分得奖金的的100x25%=25法郎。”
德扎尔格听了,觉得很有道理。
帕斯卡分布,负二项分布的正整数形式,描述第n次成功发生在第x次的概率,是统计学上一种离散概率分布,常用于描述生物群聚性,医学上用来描述传染性或非独立性疾病的分布和致病生物的分布。
满足以下条件的称为帕斯卡分布:
1.实验包含一系列独立的实验。
2.每个实验都有成功、失败两种结果。
3.成功的概率是恒定的。
4.实验持续到r次失败,r可以为任意正数。
成功发生一次的,是几何分布。
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
一代仙修陈遇遭逢无耻背叛,身陨道消,却意外重生回到一千年前的高中时代。回首千年,再世为仙,情仇不负,恩怨算清,且看他如何一步一步,返回曾经的巅峰!两脚踢翻尘世路,一肩担尽古今愁,多少美好不放手,多少恩怨不罢休!...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
...
苍茫大地,未来变革,混乱之中,龙蛇并起,谁是真龙,谁又是蟒蛇?或是天地众生,皆可成龙?朝廷,江湖门派,世外仙道,千年世家,蛮族,魔神,妖族,上古巫道,千百势力,相互纠缠,因缘际会。...
关于豪门拖油瓶,我靠画符爆红全网温凉八岁的时候随母改嫁到豪门齐家,齐轼有二子一女。长子二十三岁继承家业,叱咤风云。次子二十二岁博士毕业,成科技新星。女儿十八岁进娱乐圈,靠才华成为顶流。温凉十八岁高考结束,被她妈硬塞进齐大小姐的综艺节目,试图让她蹭热度将来嫁豪门。开始全网嘲后来全网嘲再后来影帝前辈亲口证实是温凉的符救了我。顶流巨星公开喊话求温凉大师赐我一道辟邪符。科技新星不屑一顾又玩什么花招?霸总一掷千万我要一道平安符。温凉勿扰,借住的道观遭到太多骚扰,正想着今晚找哪个公园过夜?...
...